1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
param = \ { 512: { "n": 39, "a_max": 62, "k_max": 37, "M": 0x924cba6ae99dfa084537facc54948df0c23da044d8cabe0edd75bc6, "M_prime": 0x1b3e6c9433a7735fa5fc479ffe4027e13bea, "m": 5, "t": 6, "c_a": 0x80000 } }
def coppersmith_howgrave_univariate(pol, N, beta, mm, tt, XX): """ Coppersmith revisited by Howgrave-Graham finds a solution if: * b|N, b >= N^beta , 0 < beta <= 1 * |x| < XX """ dd = pol.degree() nn = dd * mm + tt if not 0 < beta <= 1 : raise ValueError("beta should belongs in (0, 1]") if not pol.is_monic(): raise ArithmeticError("Polynomial must be monic.") polZ = pol.change_ring(ZZ) x = polZ.parent().gen() gg = [] for ii in range(mm): for jj in range(dd): gg.append((x * XX)**jj * N**(mm - ii) * polZ(x * XX)**ii) for ii in range(tt): gg.append((x * XX)**ii * polZ(x * XX)**mm) BB = Matrix(ZZ, nn) for ii in range(nn): for jj in range(ii+1): BB[ii, jj] = gg[ii][jj] BB = BB.LLL(early_red=True, use_siegel=True) new_pol = 0 for ii in range(nn): new_pol += x**ii * BB[0, ii] / XX**ii potential_roots = new_pol.roots() return [i[0] for i in potential_roots]
def roca(N): keylength = int(log(N, 2)) if keylength < 1000 : keylength = 512 elif keylength < 2000 : keylength = 1024 elif keylength < 4000 : keylength = 2048 else: keylength = 4096 M_prime = param[keylength]['M_prime'] c_prime = discrete_log(N, Mod(65537, M_prime)) ord_prime = Zmod(M_prime)(65537).multiplicative_order() top = (c_prime + ord_prime)/2 beta = 0.5 mm = param[keylength]['m'] tt = param[keylength]['t'] XX = int((2*pow(N, beta)) / M_prime) a_prime = floor(c_prime/2) while a_prime < top: m_inv = int(inverse_mod(M_prime, N)) k_tmp = int(pow(65537, a_prime, M_prime)) known_part_pol = int(k_tmp * m_inv) F = PolynomialRing(Zmod(N), implementation='NTL', names=('x',)) (x,) = F._first_ngens(1) pol = x + known_part_pol roots = coppersmith_howgrave_univariate(pol, N, beta, mm, tt, XX) for root in roots: factor1 = k_tmp + abs(root) * M_prime if mod(N, factor1) == 0: factor2 = N // factor1 return int(factor1), int(factor2) a_prime += 1 N=787190064146025392337631797277972559696758830083248285626115725258876808514690830730702705056550628756290183000265129340257928314614351263713241 print ("[+] Factoring %i" % N) factor1, factor2 = roca(N) print ("[+] Found factors of N:") print ("[+] p =" , factor1) print ("[+] q =" , factor2)
|